
J. Fluid Mech. (2000), vol. 402, pp. 1–32. Printed in the United Kingdom

c© 2000 Cambridge University Press

1

Numerical studies of two-dimensional Faraday
oscillations of inviscid fluids

By J E F F W R I G H T, S T E V E Y O N AND C. P O Z R I K I D I S†
University of California, San Diego, La Jolla, CA 92093-0411, USA

(Received 19 November 1998 and in revised form 20 July 1999)

The dynamics of two-dimensional standing periodic waves at the interface between
two inviscid fluids with different densities, subject to monochromatic oscillations nor-
mal to the unperturbed interface, is studied under normal- and low-gravity conditions.
The motion is simulated over an extended period of time, or up to the point where
the interface intersects itself or the curvature becomes very large, using two numerical
methods: a boundary-integral method that is applicable when the density of one
fluid is negligible compared to that of the other, and a vortex-sheet method that is
applicable to the more general case of arbitrary densities. The numerical procedure
for the boundary-integral formulation uses a global isoparametric parametrization
based on cubic splines, whereas the numerical method for the vortex-sheet formula-
tion uses a local boundary-element parametrization based on circular arcs. Viscous
dissipation is simulated by means of a phenomenological damping coefficient added
to the Bernoulli equation or to the evolution equation for the strength of the vortex
sheet. A comparative study reveals that the boundary-integral method is generally
more accurate for simulating the motion over an extended period of time, but the
vortex-sheet formulation is significantly more efficient. In the limit of small deforma-
tions, the numerical results are in excellent agreement with those predicted by the
linear model expressed by Mathieu’s equation, and are consistent with the predictions
of the Floquet stability analysis. Nonlinear effects for non-infinitesimal amplitudes
are manifested in several ways: deviation from the predictions of Mathieu’s equation,
especially at the extremes of the interfacial oscillation; growth of harmonic waves with
wavenumbers in the unstable regimes of the Mathieu stability diagram; formation
of complex interfacial structures including paired travelling waves; entrainment and
mixing by ejection of droplets from one fluid into the other; and the temporal period
tripling observed recently by Jiang et al. (1998). Case studies show that the surface
tension, density ratio, and magnitude of forcing play a significant role in determining
the dynamics of the developing interfacial patterns.

1. Introduction
The response of a fluid interface to a generally time-dependent body force or,

equivalently, to an externally imposed time-dependent acceleration, warrants attention
for two reasons. First, it is relevant to a broad range of natural phenomena and
engineering applications involving fluid mixing and liquid sloshing due to agitation or
container motion. Second, it provides us with a well-defined system for studying the
nonlinear dynamics of interfacial motion in two-phase flow. Three special protocols
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of acceleration normal to an interface have received special attention: a constant
acceleration associated with the Rayleigh–Taylor instability; an impulsive acceleration
associated with the Richtmyer–Meshkov instability; and a harmonic acceleration,
possibly in the presence of a constant body force, associated with Faraday waves. In
this paper, we consider the third type of motion.

The dynamics of an interface under the influence of a harmonic acceleration has
been the subject of numerous experimental and theoretical investigations dating back
to Faraday’s observations in 1831, as reviewed by Miles & Henderson (1990). Recent
experimental studies confirmed that a harmonically forced system may sustain finite-
amplitude waves over a broad range of frequencies and amplitudes of the container
motion (e.g. Edwards & Fauve 1994; Kudrolli & Gollub 1996a, b). The spatial form
and temporal evolution of these waves are affected by the geometry of the container,
the viscosity of the fluids, and the behaviour of the contact angle or motion of the
contact line. Under most conditions, the waves have a square pattern and oscillate at
half the frequency of the external acceleration with a modulated amplitude. A host
of further patterns have been observed, especially for polychromatic accelerations.

Experiments have revealed that as the amplitude of the acceleration is raised,
spatially periodic regular patterns with square, hexagonal, and triangular cells yield
disordered and fluctuating states (e.g. Crawford, Gollub & Lane 1993). Under certain
conditions, soliton-like deformations develop, adding to the diversity of the nonlinear
motion (Wu, Keolian & Rudnick 1984; Miles 1984b). When the amplitude of the
oscillations exceeds a critical threshold, cusped interfacial waves, ejection of droplets,
intense mixing, and temporal period tripling arise (Mesquita, Kane & Gollub 1992;
Goodrich et al. 1997; Jiang et al. 1998). Fauve et al. (1992), Edwards & Fauve (1993),
and Kumar & Bajaj (1995) showed that two-dimensional striped patterns dominate
as the effects of viscosity become important.

During a cycle of the oscillation, the fluids on either side of an interface are
subjected to stabilizing and destabilizing acceleration directed from the light to the
heavy fluid and vice versa. The interplay between the Rayleigh–Taylor instability,
prevailing in the first half-cycle of the vibration, and the stabilizing influence of the
fluid acceleration directed from the heavy to the light fluid, prevailing in the second
half-cycle of the vibration, is responsible for temporal asymmetry of the wave profiles
during a complete cycle. This asymmetry should be contrasted with the symmetry
of unforced gravity or capillary waves. If the frequency of the oscillation is small,
the interface is subjected to destabilizing acceleration for a sufficiently long period
of time, and this allows the Rayleigh–Taylor instability to proceed into its nonlinear
stages causing the development of spikes and bubbles.

To explain Faraday’s observations, Benjamin & Ursell (1954) considered the har-
monic oscillation of the free surface of an inviscid liquid of finite depth placed within
a cylindrical container underneath another fluid with negligible density, assuming that
the contact line meets the container at a right-angle (see also Sorokin 1957). In their
analysis, the position of the free surface is described as a weighted sum of eigenfunc-
tions corresponding to the vessel geometry or to the assumed spatial periodicity of the
interfacial pattern. Linearization yields a de-coupled system of linear ordinary differ-
ential equations governing the evolution of the coefficients of the eigenfunctions, and
straightforward rearrangement yields Mathieu’s equation. The well-known properties
of the solutions of Mathieu’s equation, deduced by carrying out a Floquet stability
analysis, reveal the existence of regimes where the standing waves are periodic or
non-periodic but bounded, and regimes where the amplitude grows at an exponential
rate and the flow is unstable (e.g. Abramowitz & Stegun 1964, Chap. 20).
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The Floquet stability analysis of Mathieu’s equation reveals that, given the fluid
densities, the interfacial tension, the amplitude of the acceleration, and the forcing
frequency, instability occurs for unstable wavenumbers that fall within separated
bands. In laboratory experiments, the wavenumbers most often observed correspond
to Faraday waves, that is, to waves whose angular frequency is half the forcing
frequency of the external acceleration. Benjamin & Ursell (1954) rationalized this
selection by arguing that viscous dissipation favours waves with the smallest possible
wavenumbers; these are the waves that oscillate with angular frequency that is equal
to half the forcing frequency of the external acceleration, and is closest to the natural
frequency of the selected waves.

Skalak & Yarymovych (1960) and Ockendon & Ockendon (1973) developed per-
turbation expansions for the amplitude of free-surface waves in potential flow, and
demonstrated the occurrence of subharmonic frequencies at the third-order expan-
sion. Their studies have been followed by a large number of asymptotic analyses of
the weakly nonlinear motion, all up to third or fifth order with respect to the wave
amplitude, as reviewed and discussed by Miles (1984a, 1993) and Miles & Henderson
(1990). The most advanced models are able to describe the wavelength selection and
hysteresis observed in the experiments (Craik & Armitage 1995). The highly nonlinear
motion of an interface with finite- and large-amplitude deformations has to date not
been simulated by numerical methods. An exception is the recent work of Jiang et
al. (1996) who performed boundary-integral simulations of two-dimensional motion
based on Cauchy’s integral method, and compared the numerical results of their
simulations to their own laboratory observations.

Kumar & Tuckerman (1994) carried out a Floquet analysis taking full account of
the viscosities of the fluids. When viscous effects are included, the linearized evolution
equations can no longer be reduced to a single ordinary differential equation, and an
eigenvalue problem involving partial-differential equations must be solved. In earlier
studies, the effect of the viscosity had been emulated by including a damping term
in Mathieu’s equation or a dissipation term in Bernoulli’s equation. The effect of
viscosity was discussed by several subsequent authors and more recently by Cerda
& Tirapegui (1998) who found that the nature of the instability for slightly viscous
fluids is fundamentally different from that for highly viscous fluids, and a Mathieu
equation may be derived to describe the dynamics of the free surface in the presence
of dominant viscous stresses.

In the present work, we study the fully nonlinear dynamics of forced standing
waves at the interface between two semi-infinite inviscid fluids, subject to oscillatory
acceleration. The investigations are based on numerical simulations of the two-
dimensional motion subject to periodic boundary conditions, in the absence of contact
lines. The goal of this study is threefold: first, to illustrate the mechanism by which the
growth of small-amplitude perturbations yields nonlinear waves; second, to investigate
the significance of the various problem parameters on the nature of the large-
amplitude motion; third, to identify regimes where violent interfacial motion leads
to strong deformation and interface breakup. For the purpose of comparing the
numerical results with laboratory observations, we account for viscous dissipation in
the bulk of the fluids in terms of a phenomenological damping coefficient included in
the equation of motion.

The simulations are conducted using two numerical methods. The first method
is based on the boundary-integral formulation for potential flow, and is applicable
when the density of one of the fluids is negligible compared to that of the other.
The numerical procedure involves integrating in time the differential equations that
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Figure 1. Schematic illustration of the initial state of a sinusoidally perturbed interface separating
two inviscid fluids.

govern the motion of interfacial marker points and the evolution of the harmonic
potential. The second method is based on a representation of the flow in terms of
a vortex sheet, and is applicable when the densities of both fluids are non-zero. The
numerical procedure involves integrating in time the differential equations that govern
the motion of interfacial marker points, and solving an integral equation for the rate
of change of the strength of the vortex sheet. Similar methods have been used by
several previous investigators to tackle problems of vortex motion and free-surface
flow, but a direct comparison has not been made. The dual numerical development
serves two purposes: it provides us with a basis for validating the results of the
simulations over an extended period of time; and it allows us to compare the relative
merits of the two approaches in the more general context of potential flow.

2. Problem statement and formulation
Consider the interface between two incompressible semi-infinite fluids with constant

surface tension τ, subject to vertical harmonic acceleration, as illustrated in figure 1. In
the undeformed state, the interface is flat and the fluids move like rigid bodies along
the y-axis with acceleration f exp (−iωt), velocity (if/ω) exp (−iωt), and displacement
d exp (−iωt), where f is the constant amplitude of the acceleration, ω is the angular
frequency of the oscillation, and d = −f/ω2 is the amplitude of the displacement. We
are interested in describing the motion of the interface subject to spatially-periodic
two-dimensional perturbations in the form of standing waves with wavelength L and
wavenumber k = 2π/L, as illustrated in figure 1.

In a frame of reference moving with the unperturbed interface, the imposed accel-
eration is mediated by an oscillatory body force. When the motion is irrotational, the
flow on either side of the interface is described by the modified Euler equation

∂u±
∂t

+ u± · ∇u± = −∇p±
ρ±

+ g− eyfcos (ωt) + ζu± (2.1)

and the continuity equation

∇ · u± = 0, (2.2)

where u is the fluid velocity, p is the pressure, g is the acceleration due to gravity, ey
is the unit vector along the y-axis, and the subscripts + or − indicate, respectively,
the upper or lower fluid.

Although the flow has been assumed to be irrotational, with the consequence that
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all dynamic boundary conditions cannot be fulfilled at the interface, the rate of
viscous dissipation in the bulk of the fluids does not vanish. When the viscosity of
one of the fluids is negligible compared to that of the other, the boundary layer along
the free surface is weak, and the rate of viscous dissipation within it is much less than
that within the bulk of the fluids (e.g. Pozrikidis 1997). In the limit of small-amplitude
waves, viscous dissipation causes the amplitude of the interface and the magnitude of
the fluid velocity to decay at a rate that is proportional to 2νk2, where ν is the kinematic
viscosity (Landau & Lifshitz 1987, pp. 92–93). In an attempt to phenomenologically
emulate the effects of viscosity for both infinitesimal- and finite-amplitude oscillations
of a viscous–inviscid interface, and thus to be able to compare the numerical results
with laboratory observations, we have included the linear damping term ζu± on the
right-hand side of equation (2.1), where ζ is a phenomenological damping coefficient.
Jiang et al. (1998) also included this term in the Euler equation to obtain agreement
with their laboratory observations. Previous linear and weakly non-linear analyses
provide evidence that the phenomenological dissipation term correctly accounts for
the weak effects of viscosity; that is, it is physically relevant at high Reynolds numbers
(e.g. Kumar & Tuckerman 1994; Edwards & Fauve 1993; Cerda & Tirapegui 1998).

In a frame of reference moving with the unperturbed interface, the velocity is
required to vanish far above and below the interface. The normal component of the
fluid velocity is required to be continuous across the interface, but the tangential
component may suffer a discontinuity which amounts to an interfacial vortex sheet.
This interpretation provides a basis for representing the vortex sheet discussed in the
next section.

2.1. Floquet analysis

As a prelude to the numerical results, we briefly review the Floquet stability analysis
for small two-dimensional interfacial deformations. Following Benjamin & Ursell
(1954), we describe the position of the interface in the form y = a(t) exp (ikx), and
linearize the governing equations and interfacial conditions to derive the modified
Mathieu equation

d2a

dt̂2
+ δ

da

dt̂
+ [p− 2q cos (2t̂)]a = 0 (2.3)

with a linear resistive term included, where t̂ = ωt/2, is the dimensionless time. We
have introduced the parameters

p =

(
2ωn(k)

ω

)2

, q = 2
kf

ω2
A, δ =

2ζ

ω
, ω2

n(k) =
kg

ω2

(
A+

τk2

g(ρ− + ρ+)

)
, (2.4)

where ωn(k) is the wavenumber dependent natural angular frequency of unforced
gravity–capillary standing waves, and

A =
ρ− − ρ+

ρ− + ρ+

(2.5)

is the Atwood ratio.
We note that the term p − 2q cos (2t̂) in equation (2.3) is periodic with period π,

and search for particular solutions in the form

a ˆ(t) = P ˆ(t) exp (−iσt̂), (2.6)

where i is the imaginary unit, P (t̂) is a periodic function with period π, and σ is
the characteristic or Floquet exponent (e.g. Coddington & Levinson 1955, Chap. 8;
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Figure 2. The stability diagram for the Mathieu equation. In the hatched regions, the amplitude
of the interface grows exponentially at a rate that is equal to the imaginary part of the Floquet
exponent. In the unhatched regions, the amplitude is oscillatory but not periodic. The points labelled
‘s’, ‘sb1’ etc. correspond to the numerical results discussed in § 4.

Jordan & Smith 1987, Chap. 9). Expressing P (t̂) in the form

P (t̂) =

∞∑
m=−∞

c2m exp (−i2mt̂) (2.7)

and substituting equations (2.6) and (2.7) into equation (2.3), we obtain

∞∑
m=−∞

{−(2m+ σ)2 − iδ(2m+ σ) + p− q(ei2t̂ + e−i2t̂)}e−i(2m+σ)2t̂c2m = 0. (2.8)

Collecting factors with same exponential terms, we derive the following infinite system
of homogeneous linear equations for the coefficients c2m:

−q c2m−2 + [p− (2m+ σr)
2 + σ2

i + δσi − i(2σi + δ)(2m+ σr)]c2m − q c2m+2 = 0. (2.9)

For arbitrary values of p, q, and δ, the real and imaginary parts of the characteristic
exponent, σr and σi, may be obtained by setting the determinant of the following
tridiagonal matrix equal to zero:

. . . −q 0
−q p− σ2

r + σ2
i + δσi − i(2σi + δ)σr −q

0 −q . . .

 , (2.10)

and then solving the resulting nonlinear eigenvalue problem using a numerical method.
The numerical error introduced by truncation is discussed by Wright (1999). For a
certain value of δ, an infinite number of characteristic exponents exist for each
combination of p and q, but the functional form of the coefficients in (2.9) ensures
that any two exponents will differ by the constant ± 2l, where l is an integer. Since the
imaginary parts of the characteristic exponents are identical, all components of the
particular solutions a(t̂) grow or decay at the same exponential rate while oscillating
with different angular frequencies.

When δ = 0, equation (2.3) reduces to the standard Mathieu equation. In this case,
the Floquet analysis reveals regimes of periodic solutions, regimes where the solution
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is oscillatory but not periodic, and regimes where the amplitude of the interface
grows at an exponential rate leading to unstable motion (e.g. Abramowitz & Stegun
1972, Chap. 20). The stability boundaries for the Mathieu equation are reproduced
in figure 2 for future reference. In the shades areas labelled ‘period 2π’, the real part
of the Floquet exponent is an odd integer; in the shades area labelled ‘period π’,
the real part of the Floquet exponent is an even integer. Note that for small forcing
amplitudes, corresponding to small values of q, instability first occurs when p is on
the order of unity, in which case the forcing frequency is comparable to the natural
frequency of the selected wave.

When δ > 0, the stability boundaries are shifted in a smooth fashion to restrict the
range of unstable wavenumbers, as discussed by Kumar & Tuckerman (1994), Cerda
& Tirapegui (1998), and Wright (1999). It should be emphasized, however, that the
phenomenological correction expressed by δ is consistent with the linearized theory
only when one of the fluids is inviscid; otherwise, the shear stress at the interface is
non-zero, and the viscous dissipation within the boundary layer established along the
interface is comparable to that within the bulk of the fluids. Kumar & Tuckerman
(1994) found that the stability thresholds predicted by the Floquet analysis of equation
(2.3) grossly underestimate those that arise by carrying out a Floquet analysis of the
unsimplified Navier–Stokes equation.

Wright (1999) discusses an alternative method of computing the Floquet exponents
of the Mathieu equation that is applicable to a broader range of problems. The idea
is to generate a time series by solving the governing equation using a numerical
method subject to an arbitrary initial condition, in this case the Mathieu equation,
and then approximate the time series with a finite sum of complex exponentials
in time using Prony’s method of exponential fitting (Pozrikidis 1998b, 1999a). The
complex coefficients that multiply time in the exponents are approximations to the
Floquet exponents. The method can be rationalized by observing that fitting with a
finite sum is equivalent to truncating the Floquet expansion (2.7) to a certain level,
which is reasonable as long as the magnitude of the complex coefficients decays at
a sufficiently high rate. In practice, it is found that unless the number of terms in
the series is sufficiently large, the error due to the truncation is substantial, and the
method of Prony fitting is inferior to the matrix method discussed in a previous
paragraph.

3. Numerical methods
To study the nonlinear dynamics of the interfacial waves, we carry out numerical

simulations using two independent numerical methods that are discussed, validated,
and compared in this section.

3.1. Boundary integral formulation

When the density of the upper fluid is negligible, the pressure on the upper side
of the interface is constant, and the evolution of the interface is determined by the
motion of the lower fluid alone. Assuming that the flow is irrotational, we introduce
the harmonic velocity potential φ so that u = ∇φ in the lower fluid, and develop an
integral equation that relates the distribution of φ and its normal derivative n · ∇φ
along the free surface.

We adopt the formulation of Longuet-Higgins & Cokelet (1976), and introduce the
physical and image complex planes with complex variables z = x+iy and ẑ = x̂+iŷ,
and the coordinate transformation ẑ = exp (−i2πz/L) that maps one period of the
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interface in the physical plane, denoted as I , onto a closed contour C in the image
plane. Since the transformation is conformal, and since the potential is single-valued
everywhere within the closed contour due to the periodicity of the flow and the
requirement that the potential must vanish far below the free surface, the potential
remains harmonic in the transformed plane; that is, φ is a harmonic function of x̂
and ŷ. The velocity in the (x, y)-plane is related to the velocity in the (x̂, ŷ)-plane by
expressions that arise by applying the chain rule; the final forms involve, for example,
the coordinate derivative ∂x̂/∂y. Green’s third identity in the image plane provides us
with the integral equation

φ(x̂0) = −1

π

∫
C

ln r ∇φ · n dl +
1

π

∫ PV

C

φ ∇ ln r · n dl, (3.1)

where the point x̂0 lies on C , r = |x̂− x̂0|, and PV denotes the principal value of the
double-layer harmonic potential (e.g. Pozrikidis 1997).

In the numerical procedure, one period of the free surface is traced by a set of
N marker points, and values of the potential are assigned at the location of the
marker points. Typically, the initial potential is set equal to zero at all marker points.
One period of the interface in the physical plane is mapped to a closed boundary
in the (x̂, ŷ)-plane using the aforementioned conformal mapping, and the integral
equation (3.1) is solved for the normal derivative of the potential over the closed
contour in the (x̂, ŷ)-plane, as will be discussed in the next paragraph. The tangential
derivative of the potential is computed by numerical differentiation using cubic-spline
interpolation with respect to the polygonal arclength. The normal and tangential
spatial derivatives of the potential are then transformed back to the physical plane
to yield the corresponding components of the fluid velocity. The rate of change of
the potential following a point particle over the physical interface is subsequently
computed using Bernoulli’s equation

Dφ

Dt
= −p

ρ
+

1

2
u · u− y(g + fcos (ωt))− ζφ, (3.2)

where D/Dt is the material derivative, p = p0 + τκ is the pressure in the fluid at the
free surface, p0 is the constant pressure above the free surface, and κ is the curvature
of the free surface in the (x, y)-plane. The potential and position of the marker
points are updated in time by the second-order Runge–Kutta method. When the
inverse Weber number Γ = τk3/ω2ρ− is large, the position of the marker points and
potential are smoothed after a certain number of steps using the five-point formula
of Longuet-Higgins & Cokelet (1976).

To solve the integral equation (3.1) for the normal derivative of potential in the
image plane, the distribution of the potential and the Cartesian coordinates of marker
points along the closed boundary are approximated using cubic splines with respect
to the polygonal arclength with periodic end conditions. Although computationally
involved, the high-order accuracy associated with the cubic splines is crucial to the
performance of the numerical method for long simulation times. To obtain the matrix
of coefficients for the unknown values of n · ∇φ at the location of the marker points,
the single-layer integral on the left-hand side of equation (3.2) is evaluated by the
method of impulses. For a specified image of a marker point x̂0, the value n · ∇φ = 1
is assigned to a particular marker point while the value n · ∇φ = 0 is assigned to the
remaining marker points, and periodic cubic-spline interpolation is invoked to obtain
a continuous and differentiable distribution of the normal derivative of potential over
the closed image of the free surface. The single-layer integral is computed using a
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combination of the five-point Gauss–Legendre quadrature for the regular elements
not containing the singular point x̂0, and the log-singularity Gauss quadrature applied
to the singular elements containing the point x̂0 (e.g. Pozrikidis 1998a). Scanning the
point x̂0, and the marker point at which n · ∇φ = 1 over the N marker points, we
obtain a system of N linear equations for the unknown normal derivatives of the
potential at the marker points. The right-hand side of the linear system contains
the values of the double-layer integral evaluated at the marker points.

The accurate computation of the double-layer potential is imperative for the
reliability of the simulations at long times. In two dimensions, the kernel of the
principal value of the harmonic double-layer integral suffers a discontinuity across the
singular point and may seemingly be computed with adequate accuracy by integrating
separately on either side of the singular point. Numerical experimentation, however,
showed that the most accurate results are obtained by expressing the potential in the
form ∫ PV

C

φ n · ∇ ln r dl =

∫
C

(φ− φ(x̂0))n · ∇ ln r dl + π φ(x̂0). (3.3)

The integral on the right-hand side is computed using the five-point Gauss–Legendre
quadrature on the cubic elements that describe the interface between consecutive
marker points.

To ensure the adequate resolution of regions of high curvature, the marker points
are redistributed after each time step using the method described by Kwak &
Pozrikidis (1998). Points are added at regions of high curvature, or when convec-
tion has caused the arclength between two successive points to increase beyond a
specified threshold. Points are removed from regions of high grid density, provided
that the removal does not produce a distribution that violates the aforementioned
criteria for point addition based on boundary curvature or maximum point separation.

3.2. Formulation in terms of an interfacial vortex sheet

To describe the motion of the interface when the density of the upper fluid is not
negligible compared to that of the lower fluid, we regard the flow as being induced
by a vortex sheet situated over the interface. The strength of the vortex sheet is equal
to the discontinuity in the velocity across the interface, given by γ = (u+ − u−) · t,
where t is the unit vector tangent to the interface, oriented as shown in figure 1.
The vortex-sheet representation is tantamount to a dipole representation, where the
non-periodic strength of the dipoles is equal to the circulation integral along the
vortex sheet (Baker, Meiron & Orszag 1982).

As a first step, one period of the interface is described in parametric form in terms
of the label a. Taking advantage of the periodicity of the flow, we find that the
velocity at a marker point that is located at the interface is given by

U (a) =
1

2L

∫ PV

I

KP (a, a′) γ(a′) da′ + (α− 1
2
) γ(a) t(a), (3.4)

where

KP (a, a′) = [cosh k(y(a)− y(a′))− cos k(x(a)− x(a′))]−1

[ − sinh k(y(a)− y(a′))
sin k(x(a)− x(a′))

]
(3.5)

is the periodic vortex-sheet kernel, and PV denotes the principal value of the vortex-
sheet integral (e.g. Pozrikidis 1997). The arbitrary numerical parameter α on the
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right-hand side of (3.4) relates the velocity of the interfacial marker points to the
velocity in the upper and lower fluids at the interface. When α = 0 or 1, the marker
points move with the velocity of the fluid on the upper or lower side of the interface,
whereas when α = 1

2
, the marker points move with the principal velocity of the vortex

sheet. The significance of this parameter will be discussed later in this section.
The evolution of the strength of the vortex sheet following the marker points is

given by the equation(
∂γ

∂t

)
a

=
A

L
t(a) ·

∫ PV

I

KP (a, a′)
(∂γ
∂t

)
a′

da′ + F(a), (3.6)

where the forcing function F(a) is given by

F(a) = − 1

A1

γ t · ∂U
∂l

+ 2A J(a)+A2γ
∂γ

∂l
+

2τ

ρ+ + ρ−
∂κ

∂l
−2A (g−eyf cosωt) · t−2ζγ

(3.7)
and

J(a) =
1

2L
t(a) ·

∫ PV

I

∂

∂t
(KP (a, a′)a,a′) γ(a′) da′ (3.8)

(e.g. Pozrikidis 1997). We have introduced the physico-numerical constants

A1 =
1

2

ρ− + ρ+

ρ+ + α(ρ− − ρ+)
, A2 = 2

ρ−α2 − ρ+(1− α2)

ρ− + ρ+

. (3.9)

The last term on the right-hand side of equation (3.7) corresponds to the phenomeno-
logical viscous dissipation term in the modified Euler equation applied at a point
on the interface, as discussed in § 2. It is clear that this term causes the strength
of the vortex sheet to decay in an exponential manner and thus simulates viscous
dissipation, but does not necessarily account for the growth of boundary layers along
the interface in any rational way.

When the Atwood ratio A defined in equation (2.5) is non-zero, equations (3.6)–(3.9)
provide us with a Fredholm integral equation of the second kind for the rate of change
of the strength of the vortex sheet following the interfacial marker points. Baker et al.
(1982) showed, and our numerical computations confirmed, that the integral operator
has a globally convergent Neumann series, and the integral equation may be solved by
the method of Neumann iterations or successive substitutions. Wright (1999) discusses
in detail the spectral radius of the integral operator in terms of the geometry of a
periodic vortex sheet. When A = 0, the first term on the right-hand side of equation
(3.6) and the penultimate term on the right-hand side of (3.7) disappear yielding an
explicit expression for the rate of change of the strength of the vortex sheet.

The numerical task is to compute the evolution of the interface using equation
(3.4) while simultaneously updating the strength of the vortex sheet by solving the
integral equation. Our numerical method follows the general principles of boundary-
element methods and is thus an improvement over traditional methods based on the
point-vortex approximation (e.g. Puckett 1993). A similar boundary-element method
was used by Higdon & Pozrikidis (1985) to compute the evolution of a vortex sheet
embedded in a homogeneous fluid corresponding to A = 0 in the absence of surface
tension. In their case, the circulation along the vortex sheet was conserved at the
position of the marker points and the strength of the vortex sheet arose by simple
differentiation.

In the numerical method, one period of the vortex sheet is traced with a collection
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of N marker points, and initial values for the strength of the vortex sheet are assigned
at the marker points. The shape of the vortex sheet is approximated by a collection
of blended circular arcs defined in terms of the marker points. The computation
of the blended arcs is described in detail by Wright (1999). The tangential vector
and curvature of the vortex sheet follow readily from the arc representation. The
right-hand side of equation (3.8) is evaluated by integrating over the collection of the
individual arcs. To accurately compute the principal-value integral over an arc, we
write∫ PV

Arc

KP (a, a′) γ(a′)
∂l

∂a′
da′

=

∫
Arc

(KP − K )(a, a′) γ(a′)
∂l

∂a′
da′ +

∫ PV

Arc

K (a, a′) γ(a′)
∂l

∂a′
da′, (3.10)

where K is the non-periodic vortex-sheet kernel given by

K (a, a′) =
1

[x(a)− x(a′)]2 + [y(a)− y(a′)]2

[ −y(a) + y(a′)
x(a)− x(a′)

]
, (3.11)

and evaluate the first integral on the right-hand side numerically using the Gauss–
Legendre quadrature. For the purpose of computing the principal-value integral
on the right-hand side of (3.10), we assume that the strength of the vortex sheet
varies linearly with respect to the sine of the polar angle that is subtended from the
canters of the blended arc centres, measured from an end point. The round-off error
due to computation of the inverse trigonometric functions is drastically reduced by
integrating in local triangle coordinates, as discussed by Wright (1999).

The rate of change of the strength of the vortex sheet is computed by solving
the integral equation using the method of successive substitutions. The iterations
are terminated when the change in the vortex sheet strength is less than a specified
threshold at each marker point. The function J(a) defined in (3.8) expresses the rate
of change of γ following the vortex sheet, computed as though the strength of the
vortex sheet remained constant in time. To evaluate this term, we exchange the order
of the differential and integral operators, and then perform numerical differentiation
using a very small time step. Derivatives with respect to arclength along the interface
are evaluated with second-order centred finite differences. After each step, the marker
point positions, velocities, and strength of the vortex sheet are regularized using the
five-point polynomial smoothing method of Longuet-Higgins & Cokelet (1976), and
the marker points are redistributed along the sheet as described in the preceding
subsection.

A theory for the optimal choice of the numerical parameter α on the right-
hand side of equation (3.8) is not available. Roberts (1983) studied the point-vortex
approximation, and found that choosing α so that the point vortices follow one fluid
or another prevents the growth of the familiar ‘sawtooth’ instabilities. Unfortunately,
his conclusions are specific to the point-vortex approximation and do not apply to the
boundary-element method developed in this work. In a study of singularity formation
during the Rayleigh–Taylor instability, Baker, Caflisch & Siegel (1993) argued, on the
basis of linear stability analysis, that setting α = (A + 1)/2 eliminates the dispersion
of high wavenumbers, and thereby reduces the numerical error. Their best choice
coincides with that of Roberts (1983) when the densities of the fluids are matched or
the density of one fluid is negligible compared to that of the other, but not under
more general conditions. Finally, based on an analogy with the Burgers equation,
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Zufiria (1988) suggested that α should be chosen so that the coefficient in front of
the term γ ∂γ/∂l in equation (3.7) vanishes, thereby preventing the development of
shocks in the distribution of the strength of the vortex sheet.

It appears from these earlier studies that the optimal value of α depends not
only on the unperturbed strength of the vortex sheet, Atwood ratio, and method of
discretization, but also on the type of vortex-sheet motion. While criteria such as
conservation of circulation following the marker points could be used as guidelines,
we have conducted extensive numerical experiments using as a reference results
obtained by the boundary-integral method to find that setting α = 1

2
is, in general,

the most appropriate choice (Wright 1999). Accordingly, this value was adopted in
all simulations presented in this paper.

3.3. Code validation and numerical accuracy

To investigate the relative performance of the boundary-integral and vortex-sheet
methods, we conducted several series of parallel simulations. In all cases, the interface
is perturbed by a sinusoidal wave of amplitude a0 and wavelength L, while the
distribution of the potential over the interface and strength of the vortex sheet retain
their unperturbed zero values. When the initial amplitude of the interface is small,
and the pair (p, q) falls within a regime of stable solutions in the Floquet stability
diagram shown in figure 2, the amplitude of the interface remains small but the
interfacial oscillation is not necessarily periodic in time.

In figure 3, we present the time history of the amplitude of the interface corre-
sponding to the trough of the initial sinusoid, for a disturbance with initial amplitude
a0/L = 0.001, over twenty-four periods of oscillation. In this simulation, p = 6,
q = 2, and δ = 0, corresponding to physical conditions: ρ+ = 0, ρ− = 1000 kg m−3,
L = 1.0 m, g = 9.81 m s−2, f = 11.494 m s−2, ω = 6.0092 s−1, and ζ = 0, which
are represented by the point labelled ‘s’ (stable) in figure 2. The numerical results
were obtained using the boundary-integral and the vortex-sheet methods with a fixed
number of 60 marker points over each period. In this case, higher harmonics are not
excited and the interface remains sinusoidal throughout the simulation. Figure 3(a)
shows that both methods consistently reproduce the overall features of the solution
of Mathieu’s equation. Closer examination near the end of the simulation presented
in figure 3(b), however, reveals that both numerical solutions eventually deviate from
the linearized predictions. The difference between the numerical solutions and the lin-
earized prediction is reduced as the number of interfacial marker points is increased,
but this results in substantially longer computational time and requires smaller time
steps.

Overall, the comparisons shown in figure 3 confirm the consistency of the two
numerical methods. Numerical experimentation showed that without using identity
(3.3) to compute the double-layer potential, the accuracy of the boundary-integral
method is significantly inferior to that of the vortex-sheet method, and this results in
discrepancies with the theoretical predictions at earlier times. In contrast, the vortex-
sheet method is less sensitive to the accuracy of the intermediate computations. The
reason for this behaviour is not entirely clear.

The complete boundary-integral solution shown in figure 3 requires approximately
12 hours of cpu time on a 200 MHz Pentium Pro running linux 4.1 and a fortran 77
compiler, while the vortex solution requires only 3 hours. The increased computational
time in the first case is due to the formulation in terms of a Fredholm integral equation
of the first kind, which requires the solution of a linear system at each time step.
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Figure 3. Time history of the amplitude of the interface for p = 6, q = 2, and a0/L = 0.001,
represented by the point labelled ‘s’ in figure 2. The solid line represents the solution of the Mathieu
equation with δ = 0; the circles and diamonds represent, respectively, solutions obtained with
the boundary-integral and vortex formulations. Panel (b) is a magnification of the tail-end of (a)
showing deviation of the numerical results from the Mathieu solution.
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Figure 4. Evolution of the amplitude of a standing gravity–capillary wave computed to test the
accuracy of the numerical methods. The solid line represents the nearly grid-size-independent
boundary-integral solution. The dashed and dotted lines represent results of the vortex formulation
obtained with 100 and 150 marker points, respectively.

Thus, in terms of efficiency, the vortex-sheet method outperforms the boundary-
integral method.

Next, we compare the performance of the numerical methods for a large-amplitude
motion. In figure 4, we present the time history of the amplitude of a standing gravity–
capillary wave subject to a disturbance with initial amplitude a0/L = 0.065 over
twelve periods of oscillation. The physical conditions are ρ+ = 0, ρ− = 1000 kg m−3,
L = 1.0 m, τ = 0.072 N m−1, g = 9.81 m s−2, and ζ= 0. The boundary-integral solution
was obtained using approximately 100 interfacial marker points – the actual number
changed slightly in time due to regridding – and was confirmed to be accurate to within
plotting resolution. The vortex-sheet solution was obtained with a fixed number of
100 or 150 points. The discrepancies between the three numerical solutions are most
prominent at the peaks of the oscillations at long times. These comparisons suggest
that when the amplitude of the interface is large compared to the wavelength of the
perturbation, the boundary-integral method outperforms the vortex-sheet method for
the same number of marker points.

4. Results and discussion
We begin presenting the results of dynamical simulations by considering the dy-

namics of a free surface corresponding to Atwood ratio A = 1, and then proceed to
examine the effect of the density of the upper fluid. In all cases, the interface is per-
turbed by a sinusoidal wave of amplitude a0 and wavelength L, while the distribution
of the potential and strength of the vortex sheet retain their unperturbed zero values.
Due to the large available parametric space, we only present results for typical case
studies that illustrate the salient features of the motion. Additional case studies are
presented by Wright (1999).
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Figure 5. (a) Evolution of the amplitude of the interface for p = 6.828, q = 4, and δ = 0,
corresponding to the point labelled ‘sb1’ (stability boundary) in figure 2; the solid line represents
the numerical solution, and the dashed line represents the solution of the Mathieu equation.
(b) Evolution of the first four spatial harmonics. The second harmonic corresponds to the point
labelled ‘sb2’ in figure 2, and its period is indicated by the arrow labelled ‘T2’.

4.1. Deviation from the linear solution

When the initial amplitude of the interface is small and the pair (p, q) lies on
one of the stability boundaries in the Mathieu stability diagram, linear analysis
predicts that the interface oscillates periodically while maintaining its initial amplitude.
In figure 5(a), we present the time history of the amplitude of a small-amplitude
disturbance with a0/L = 0.001, for p = 6.828, q = 4, and δ = 0, corresponding
to the point labelled ‘sb1’ (stability boundary) in figure 2. These values of p and
q correspond to the physical conditions: ρ+ = 0, ρ− = 1000 kg m−3, L = 1 m,
g = 9.81 m s−2, f = 11.494 m s−2, ω = 6.0092 s−1, τ = 0.072 N m−1, and ζ = 0.
Examination of figure 5(a) reveals that the boundary-integral solution closely follows
the solution of the Mathieu equation up to 4 s. During this initial stage, the period of
oscillation of the interface is nearly equal to that of the imposed forcing, T = 0.956 s,
as predicted by the Floquet stability analysis. Significant deviations, however, occur at
longer times. We note, in particular, that the numerical solution exhibits alternatingly
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Figure 6 (a, b). For caption see facing page.

positive and negative displacements from the linearized prediction, and this suggests
that the deviation is due to the growth of a temporal subharmonic wave due to
nonlinear interactions.

In figure 5(b), we present the time histories of the first four spatial Fourier modes
of the interfacial position, denoted as a(i), where i is an integer. The fundamen-
tal mode a(0) closely follows the linearized prediction over the entire length of the
simulation, exhibiting a periodic behaviour, whereas the second-harmonic mode a(1)

grows rapidly to dominate during the latter part of the simulation. The angular
frequency of the second spatial mode is equal to half the angular frequency of
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Figure 6. (a) Evolution of the amplitude of the interface for p = 1, q = 0.055, ζ = 0.7 and
a0/L = 0.005. In the absence of damping, these conditions are represented by the point labelled ‘d’
in figure 2. The asymptotic wave height obtained by Jiang et al. (1996) is indicated by the vertical
arrow on the right side of the figure. (b) Asymptotic wave shape at maximum amplitude. The solid
line represents the results obtained with the boundary integral method, and the symbols represent
the numerical results of Jiang et al. (1996). (c, d) Evolution of the fundamental and second spatial
harmonics.

the fundamental mode, and this suggests that the instability is subharmonic rela-
tive to the fundamental mode. This behaviour, however, is not surprising: The pair
(p, q) corresponding to the second-harmonic mode is located at the point labelled
‘sb2’ in figure 2, which lies within the unstable regime of the Mathieu stability
diagram. The imaginary part of the Floquet exponent for the second-harmonic
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mode obtained by setting the determinant of (2.10) with p = 13.66, q = 8.0,
and δ = 0, is found to be σi = 0.318. Accordingly, the Floquet analysis predicts
that the maximum amplitude of the second-harmonic mode grows exponentially as
exp (0.159 ωt) which is in excellent agreement with the results of the numerical
simulations. The numerical results shown in figure 5(b) suggest that higher har-
monics become significant at longer times, also contributing to the fully nonlinear
motion.

4.2. Comparison with the experiments of Jiang et al.

When the amplitude of the interface is small, and the pair (p, q) lies within one
of the unstable regions of the Mathieu stability diagram, linear analysis predicts
that the interface oscillates with a maximum amplitude that grows exponentially in
time. In figure 6, we present numerical solutions generated by the boundary inte-
gral method for p = 1.0, q = 0.055, and δ = 0.0069, corresponding to the physical
conditions: ρ+ = 0, ρ− = 1000 kg m−3, L = 0.6 m, τ = 0.072 N m−1, g = 9.81 m s−2,
f = 1.0915 m s−2, ω = 20.295 s−1, and ζ = 0.07 s−1. In the absence of damping, the
pair (p, q) is represented by the point labelled ‘d’ (damped) in figure 2. These physical
conditions correspond to the experiments and accompanying simulations for an air–
water interface by Jiang et al. (1996). It should be noted that the magnitude of the
damping coefficient ζ, selected to reconcile experiments and simulation, is two orders
of magnitude larger than the theoretical value for dissipation within the bulk of a
viscous fluid undergoing small oscillations, as given by Landau & Lifshitz (1987). This
large difference emphasizes the phenomenological nature of ζ and the significance of
viscous dissipation within the oscillatory boundary layers, along the container walls,
and over the free surface, as discussed by Henderson & Miles (1994) and Henderson
(1998).

The evolution of the maximum amplitude of the interface shown in figure 6(a)
is consistent with the numerical and experimental results of Jiang et al. (1996).
After an initial period characterized by rapid growth, the maximum amplitude
of the interface decays in an oscillatory fashion, and a periodic standing wave
is established. The asymptotic wave height obtained by Jiang et al. (1996), indi-
cated by the vertical arrow on the right, is in good agreement with that pre-
dicted by our simulations. In figure 6(b), we plot, with the solid line, the shape
of the standing wave at the peak of the oscillation, and compare it with the mea-
surements of Jiang et al. (1996) represented by the circles, to find good agree-
ment. The sharpness of the wave crest relative to the trough is due to contri-
butions from higher spatial harmonics. To illustrate this feature explicitly, in fig-
ure 6(c, d), we present the time histories of the first and second spatial Fourier
modes of the evolving interface. At long times, the fundamental mode oscillates
harmonically at a constant amplitude, while the second mode makes a positive
contribution that is responsible for the peaked configuration at maximum ampli-
tude. The contributions of the third and higher harmonics are negligible in this
case.

4.3. Transition to a fully nonlinear motion

As the amplitude of the imposed acceleration is raised, a fully nonlinear motion
is established at long times, even from small-amplitude perturbations. Consider
a perturbation with a0/L = 0.001, imposed on a physical system with ρ+ = 0,
ρ− = 1000 kg m−3, L = 1.0 m, τ = 0.072 N m−1, g = 9.81 m s−2, f = 4.905 m s−2,
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Figure 7. (a) Evolution of the amplitude of the interface for p = 4, q = 1, corresponding to the point
labelled ‘e1’ in figure 2. The solid line represents the boundary-integral solution, and the dashed
line represents the solution of Mathieu equation’s equation. (b) Evolution of the fundamental and
second harmonic spatial modes.

ω = 7.851 s−1, and ζ = 0 s−1, corresponding to p = 4.0, q = 1.0, and δ = 0. This
pair of (p, q) is represented by the point labelled ‘el’(exponenetial) in figure 2; the
associated imaginary part of the Floquet exponent has the positive value σi = 0.046,
predicting exponential growth. In figure 7(a), we display the time history of the
amplitude of the free surface over seventy-five oscillations of the interface com-
puted by the boundary-integral method, represented by the solid line, along with
the linear predictions computed by solving Mathieu equation, represented by the
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dashed line. During the initial period of rapid growth, the linearized prediction
closely approximates the numerical solution, but important deviations arise when
the maximum amplitude of the interface has become approximately twenty times
the initial value. This point corresponds to the time when the higher harmon-
ics of the spatial interface Fourier expansion become significant, as shown in fig-
ure 7(b). For t > 20 s, the interfacial oscillation develops a slow modulation around
a mean value that is similar to that observed in the damped solution shown ear-
lier in figure 6(a). This behaviour suggests that the occurrence of the slow time
scale is not due to viscous damping, but it is an intrinsic feature of the nonlinear
motion.

Doubling the magnitude of the acceleration, while leaving the remaining phys-
ical parameters unchanged, yields the dimensionless parameters p = 4.0, q = 2.0
and δ = 0 represented by the point labelled ‘e2’ in figure 2. The associated imag-
inary part of the Floquet exponent is found to be σi = 0.7146, predicting rapid
growth. Figure 8(a) displays the evolution of the amplitude of the interface, com-
puted with the boundary-integral method, along with the linearized predictions.
The numerical solution reveals that, after an initial period of rapid growth, the
maximum amplitude of the interface decays and then shows a rather irregular
behaviour. This long-time motion contrasts with that shown in figures 6(a) and
7(a). In figure 8(b), we present the evolution of the first four harmonic spatial
modes. For t < 5 s, the magnitude of the higher harmonics is comparable to that
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for the lightly forced case shown in figure 7(b). As time progresses, however, the
amplitude of the second harmonic changes sign and higher harmonics become
significant.

The significant appearance of higher harmonics in the case of strong forcing is
associated with the formation of paired waves travelling within each period. The
constructive interference of these waves yields momentary geometrical peaks with
high curvature. In figure 8(c), we display the shape of the interface at a sequence
of times between t = 13.5 s and t = 13.7 s. A pair of travelling waves, indicated by
arrows, moves symmetrically toward the centre of the figure and combine to yield
a sharp peak. When the curvature of the interface has become large, sudden local
acceleration occurs due to the effects of surface tension. This behaviour is consistent
with results reported recently by Schultz et al. (1998), who found that the presence of
surface tension prevents the formation of cusped waves. In the absence of adaptive
time stepping, the large local velocity is responsible for numerical instabilities that
result in the formation of physically irrelevant structures. In the present simulation,
the interface intersected itself shortly after the formation of the peak shown in
figure 8(c).

4.4. Effect of the Atwood ratio

We proceed next to investigate the effect of the Atwood ratio A under con-
ditions where the acceleration of gravity is negligible compared to the ampli-
tude of the imposed harmonic acceleration, and the ratio f/g is large. Unless
stated otherwise, all simulations correspond to a perturbation with initial amplitude
a0/L = 0.01, and physical conditions ρ− = 1000 kg m−3, L = 1.0 m, τ = 0.072 N m−1,
g = 0 m s−2, f = 0.01 m s−2, ω = 0.26728 s−1, and ζ = 0 s−1. The density of
the upper fluid ρ+ is varied to produce a range of Atwood ratios. As A is
raised from zero to unity, corresponding pairs (p, q) move from a stable regime
near the origin of the Mathieu stability plane shown in figure 9, confined in
the range 0 < A < 0.2, into a regime where the first subharmonic mode be-
comes unstable while the second- and third-harmonic modes remain stable. The
pairs (p, q) corresponding to the first harmonic fall within a stable regime, as de-
picted by the line labelled ‘second harmonic’ in figure 9. Within this parametric
framework, we obtain four distinct regimes of evolution with strikingly different be-
haviours, identified as linearly stable, slow modulation, plume formation, and droplet
ejection.

Within the linearly stable regime 0 < A < 0.2, prevailing between the points labelled
1 and 2 in figure 9, the densities of the upper and lower fluids are of the same order
of magnitude, the interface retains a nearly sinusoidal shape during the oscillations,
and the evolution of the amplitude of the fundamental wave matches closely that
predicted by Mathieu’s equation.

Within the slow modulation regime, the shape of the interface remains smooth
at all times, but it no longer has a sinusoidal shape. The fluid responds to the
imposed acceleration on a time scale that is fast compared to the period of the
acceleration, and there is ample time for the interface to relax before the next
cycle begins. In this manner, the deformations suffered during successive cycles do
not build up into a violent motion. Examples of slow modulation occurring for
0.22 < A < 0.5, are presented in figure 10, showing the evolution of the amplitude
of the interface and of the fundamental and second spatial harmonic modes for
four values of A. The angular frequency of the modulated temporal oscillations
is equal to half the angular frequency of the imposed forcing, in agreement with
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the predictions of the Floquet stability analysis. In all cases, we observe an initial
exponential growth at a rate that is consistent with the growth rate predicted by
the Floquet analysis. Slow modulation of the amplitude of the interface then follows
corresponding to a cyclic variation in the amplitude of the second harmonic waves.
The behaviour in this regime is qualitatively similar to that for A = 1, p = 4,
q = 1 discussed in § 4.2. The absence of damping confirms once again that the
slow modulation of the maximum amplitude is an intrinsic feature of the nonlinear
motion.

The sequence 10(a–d) illustrates that as the value of the Atwood is raised from 0.22
to 0.5, the second spatial harmonic wave becomes increasingly important. The period
of oscillation of this wave is in good agreement with that predicted by linear theory
for monochromatic waves. Once excited, the second harmonic continues to oscillate
as though it evolved in isolation, in spite of its significant amplitude. For example, in
figure 10(b) we observe that when the peak amplitude of the fundamental wave passes
through a minumum within the time interval 500 s < t < 600 s, the evolution of the
amplitude of the second-harmonic mode remains effectively unchanged. In computer
animation, one sees several cycles of this harmonic oscillation before the subsequent
growth of the fundamental.

As the Atwood number is raised further, Floquet theory predicts faster growth
of the fundamental mode, and consequent faster appearance and growth of the
second harmonic. In the plume formation regime 0.5 < A < 0.7, the interface
suffers local instabilities that cause plume-like structures to develop in a sponta-
neous fashion. Figure 11(a) displays the evolution of the amplitude of the interface
in comparison with the imposed forcing. At short times, the former shows a dis-
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torted oscillation whose period is equal to twice that of the imposed acceleration.
At long times, the height of the interface reaches a minimum at about t = 46 s,
whereupon the external acceleration completes its second cycle, and then fluctuates
during the next two cycles. During the second and third cycle, a Kelvin–Helmholtz
instability develops along the vertical portions of the vortex sheet causing the in-
terface to roll up into a plume-like configuration, as shown in figure 11(b). It is
well established that a singularity in curvature, manifested as a kink or corner,
precedes the roll up of the vortex sheet in the absence or presence of surface ten-
sion (e.g. Hou, Lowengrub & Shelley 1997; Cowley, Baker & Tanveer 1999), but
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Figure 10. Evolution of the amplitude of the interface and spatial harmonics for the conditions
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As the Atwood ratio is increased, the amplitude of the oscillation becomes increasingly larger
eventually leading to droplet ejection.

our numerical method is not sufficiently accurate to probe the fine features of the
motion.

In the droplet ejection regime, 0.7 < A < 1.0, we observe the formation and ejec-
tion of two-dimensional droplets from the points of highest elevation. Numerical
experimentation showed that the process of droplet formation is insensitive to the
initial amplitude of the perturbation. Figure 12(a) shows the evolution of the max-
imum amplitude of the interface for A = 1.0, and figure 12(b, c) shows snapshots
of the evolving interface during the process of drop formation; the corresponding
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waves. (b) Shape of the interface at end of the simulation showing the formation of a plume.

times are indicated by the symbols in figure 12(a). Physically, the displacement of
the interface from the unperturbed position accumulates during successive cycles,
rather than relaxing as was observed for smaller values of A. A certain mass of
lower fluid is entrained into the upper fluid in the form of a jet, and a droplet
develops which is then pinched off during the next cycle of the oscillation. If the
motion were axisymmetric or three-dimensional, the thread would break up due
to capillarity into a series of satellite drops. The attachment point of the thread
connecting the drop to the lower fluid is the site of a corner that causes the numer-
ical computation to fail at a certain time. Figure 12(d) depicts the evolution of
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the strength of the interfacial vortex sheet. As time progresses, the strength ampli-
fies near the base of the drops, possibly leading to singular behaviour at long
times.

Jiang et al. (1998) reported laboratory observations of the dynamics of Fara-
day ways under conditions corresponding to the lowest unstable regime shown in
figure 9, properly shifted to account for the effects of viscous dissipation. Their
results revealed that, as the forcing amplitude is raised, whereupon the pair (p, q)
moves further away from the apex of the stability boundary, the standing waves
undergo an intriguing transformation similar to that reported in this subsection with
respect to the Atwood ratio. Jiang et al. (1998) found that, as the forcing ampli-
tude is raised, small plunging breakers first appear on either side of a dimpled
crest, and then period tripling occurs with breaking developing in every two out of
three temporal periods. The period-tripled evolution involves a wave profile with a
sharp crest followed by violent breaking and drop formation; a profile with dim-
pled or flat crest and a double plunger on either side; and a profile with a round
crest.

Profiles qualitatively similar to those corresponding to the three modes of the
period-tripled dynamics were observed in our simulations, although numerical diffi-
culties prevented an exact reproduction; the numerical simulations break down when
a sharp wave breaks up to eject a drop. It is reassuring, however, that period
tripling is clearly manifested in the numerical results for conditions close to those
identified by Jiang et al. (1998). In figure 13(a), we present the evolution of the
maximum elevation of an air–water interface for ρ− = 1000 kg m−3, ρ+ = 1 kg m−3,
L = 0.6 m, τ = 0.072 N m−1, g = 9.81 m s−2, f = 1.78 m s−2, ω = 19.395 s−1, and
ζ = 0 s−1, corresponding to p = 1.09 and q = 0.10. At long times, a nearly
periodic pattern that is repeated at every third cycle is established. The general
features of this graph are similar to those presented in figure 16(a) of Jiang et
al. (1998) for a period-tripled breaker. Wright (1999) discusses pseudo-phase-space
portraits that are similar to those presented by Jiang et al. (1998). The interfa-
cial profiles corresponding to the three successive peaks indicated by the arrows in
figure 13(a), shown in figure 13(b), are precursors of the three modes identified by
Jiang et al. (1998). This comparison strongly suggests that period tripling is not
due to viscous effects, neither it is associated with the dynamics of the contact
line, but develops as the result of a nonlinear motion in the context of irrotational
flow.

5. Concluding remarks
One of the most significant findings of the present numerical investigation is

the development of plumes at moderate values of the Atwood ratio, and the
formation and ejection of droplets at the extremes of the interfacial waves at
higher values of the Atwood ratio. The early stages of droplet ejection are qual-
itatively similar to those of plume formation, but differences arise during the late
stages when the vertical stem of the plume narrows to a thin filament connect-
ing the droplet with the bulk of the lower fluid rather than developing a sec-
ondary instability. This behaviour is similar to that identified in previous numer-
ical studies of the Rayleigh–Taylor instability (e.g. Ceniceros & Hou 1998). Our
results are in agreement with the experimental observations of Goodrich, Shi &
Lathrop (1996) and Jiang et al. (1998) who observed the ejection of nearly axi-
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symmetric droplets from a vibrating air–water interface, marking the onset of
mixing.

Our formulation accounted for the effects of viscosity by means of a phenomenolog-
ical coefficient whose physical relevance has been established only for small-amplitude
oscillations. In the case of a free surface, but not an interface, weak viscous effects
at high Reynolds numbers may be accounted for by means of a boundary-layer
analysis, but implementation difficulties associated with the seaming of the boundary
layers at free-surface stagnation points are a serious impediment. Direct numerical
simulation on the basis of the Navier–Stokes equations is the only viable alternative
for studying large-amplitude motions. The development of numerical methods for
two-dimensional flow based on domain mapping followed by spectral expansions is
the subject of ongoing investigation.
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To study the nonlinear dynamics of doubly-periodic patterns along a free surface
or interface between two inviscid fluids, it is necessary to extend the boundary-integral
and vortex methods described in this paper to three dimensions. Pozrikidis (1999b)
recently developed a boundary-element method for simulating the self-induced mo-
tion of closed or periodic three-dimensional vortex sheets, based on evolution laws
for the strength of the vortex sheet or for the density of the effective dipole or
circulation along the vortex sheet. The use of the doubly-periodic Green’s func-
tion of Laplace’s equation, and its efficient computation in terms of Ewald sums
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are two crucial components of the numerical method. The adaptation of this gen-
eral methodology to the problem of Faraday oscillations is the subject of ongoing
research.

This research has been supported by NASA.
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